logo80lv
Articlesclick_arrow
Research
Talentsclick_arrow
Events
Workshops
Aboutclick_arrow
profile_loginLogIn

Get Your Hands on SIGGRAPH 2018 Papers

Have you been looking for a page with links to the papers that will be presented at SIGGRAPH 2018?

Have you been looking for a page with links to the papers that will be presented at SIGGRAPH 2018? Here it is. Ke-Sen Huang has once again prepared a list of this year’s submissions on his website.

Here are some papers to get you interested:

A Multi-Scale Model for Simulating Liquid-Fabric Interactions

We propose a method for simulating the complex dynamics of partially and fully saturated woven and knit fabrics interacting with liquid, including the effects of buoyancy, nonlinear drag, pore (capillary) pressure, dripping, and convection-diffusion. Our model evolves the velocity fields of both the liquid and solid relying on mixture theory, as well as tracking a scalar saturation variable that affects the pore pressure forces in the fluid. We consider the porous microstructure implied by the fibers composing individual threads, and use it to derive homogenized drag and pore pressure models that faithfully reflect the anisotropy of fabrics. In addition to the bulk liquid and fabric motion, we derive a quasi-static flow model that accounts for liquid spreading within the fabric itself. Our implementation significantly extends standard numerical cloth and fluid models to support the diverse behaviors of wet fabric, and includes a numerical method tailored to cope with the challenging nonlinearities of the problem. We explore a range of fabric-water interactions to validate our model, including challenging animation scenarios involving splashing, wringing, and collisions with obstacles, along with qualitative comparisons against simple physical experiments.

Scene-Aware Audio for 360° Videos

Although 360° cameras ease the capture of panoramic footage, it remains challenging to add realistic 360° audio that blends into the captured scene and is synchronized with the camera motion. We present a method for adding scene-aware spatial audio to 360° videos in typical indoor scenes, using only a conventional mono-channel microphone and a speaker. We observe that the late reverberation of a room’s impulse response is usually diffuse spatially and directionally. Exploiting this fact, we propose a method that synthesizes the directional impulse response between any source and listening locations by combining a synthesized early reverberation part and a measured late reverberation tail. The early reverberation is simulated using a geometric acoustic simulation and then enhanced using a frequency modulation method to capture room resonances. The late reverberation is extracted from a recorded impulse response, with a carefully chosen time duration that separates out the late reverberation from the early reverberation. In our validations, we show that our synthesized spatial audio matches closely with recordings using ambisonic microphones. Lastly, we demonstrate the strength of our method in several applications.

Dexterous Manipulation and Control with Volumetric Muscles

We propose a framework for simulation and control of the human musculoskeletal system, capable of reproducing realistic animations of dexterous activities with high-level coordination. We present the first controllable system in this class that incorporates volumetric muscle actuators, tightly coupled with the motion controller, in enhancement of line-segment approximations that prior art is overwhelmingly restricted to. The theoretical framework put forth by our methodology computes all the necessary Jacobians for control, even with the drastically increased dimensionality of the state descriptors associated with three-dimensional, volumetric muscles. The direct coupling of volumetric actuators in the controller allows us to model muscular deficiencies that manifest in shape and geometry, in ways that cannot be captured with line-segment approximations. Our controller is coupled with a trajectory optimization framework, and its efficacy is demonstrated in complex motion tasks such as juggling, and weightlifting sequences with variable anatomic parameters and interaction constraints. 

You can fund the full list here or browse works from previous years there.

Join discussion

Comments 0

    You might also like

    We need your consent

    We use cookies on this website to make your browsing experience better. By using the site you agree to our use of cookies.Learn more